
1. The key to this problem is to realize that the βs in the expression for γ have a time 

derivative in them. So an argument of this type is valid 

 

  
2 2

1 1

2 2 2 2 2 21 1/ .

t t

t t

dt dt c dx dy dz       

 

But the invariance of the space-time interval shows that under a general Lorentz 

transformation 
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The square root differential expression is well defined because the four-velocity 

of any massive particle is always time-like. 

 

A more formal and precise argument is the following. Divide the closed interval 

 1 2,t t  into N equal sub-intervals of duration  2 1 /t t t N    labeled by the index 

i:  1 11 ,iI t i t t i t        . By the general Lorentz transformation between 

frames we may establish the coordinates of the space-time events    1 1,c t x t  and 

   1 1,c t i t x t i t     in the prime frame. Call the coordinates in the K  frame 

 0 0,c t x   and ,i ict x   respectively. Recall the mean value theorem from calculus 
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for some 
i iT I . In the limit N  , the intervals become infinitesimals and 
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   This means 
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The Lorentz transformations are linear, and so the differentials c t  and x  

transform in the same way as ct and x . Therefore, by the invariance of the space-

time interval under Lorentz transformations, 
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because the durations of all the intervals in the prime frame approach zero as N 

increases without bound. It should be noted that 
it  is NOT necessarily constant 

as i changes when there is acceleration in the orbit. 

 

2. By the relativistic Lorentz Force equation 
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3. Using the relativistic momentum-energy relation 
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4. Starting with the relativistic Lorentz force 
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5. The formula means B  measured in units of T m is equal to 3.3356 times the 

momentum measured in GeV / c , for a singly charged particle. Note 1 T is 1 V 

s/m2. So eB for 1 T m is 1 eV s/m, which are momentum units. 1 GeV / c is 109 

eV/2.99792458 × 108 m/s = 3.33564 eV s/m. So 

    T m 3.33564  GeV /B p c   

For an ion with atomic weight A , the total momentum in units of GeV / c  is

 GeV / u /A c   . For a fully stripped ion, the particle has a charge of Ze . So 

      T m 3.33564 /   GeV/u /B A Z p c      

This means, for example, that the magnetic field needed to bend a fully stripped 

heavy ion is more than twice that needed to bend a proton at the same momentum 

per atomic mass unit. 

 

6. This problem is a perfect example of the use of the magnetic rigidity. The electron 

relativistic momentum is  2 2

01 1 0.511 MeV/ ,p m c c     the magnetic 

rigidity is  2 1 0.511 MV/c  , and 1 T = 1 (V sec)/(m2). Now 
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for magnets in the normal configuration. The bend angles are /16 0.19635 rad   

for the first arc and /32 0.098175 rad   for the rest of the arcs. 
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605 / 0.511 1 0.511 10 V
2sin 0.098175 0.3956 T 3.956 kG

2.998 10  m/sec 1 m

1693/ 0.511 1 0.511 10 V
2sin 0.04909 0.5542 T 5.542 kG

2.998 10  m/sec 1 m

2781/ 0.511 1 0.511 10 V
2sin 0.0

2.998 10  m/sec 2 m
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4909 0.4552 T 4.552 kG

3868 / 0.511 1 0.511 10 V
2sin 0.04909 0.4220 T 4.220 kG

2.998 10  m/sec 3 m

4956 / 0.511 1 0.511 10 V
2sin 0.04909 0.5408 T 5.408 kG

2.998 10  m/sec 3 m
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Arc Electron 

Energy 

(MeV) 

Number of 

Dipoles 

Dipole 

Length 

(m) 

Bend 

Angle 

(rad) 

Magnetic 

Field 

(T) 

1 605 16 1 0.19635 0.3956 

2 1693 32 1 0.098175 0.5542 

3 2781 32 2 0.098175 0.4552 

4 3868 32 3 0.098175 0.4220 

5 4956 32 3 0.098175 0.5408 

 

7. Technically, we did this calculation in the lectures. If Hill’s equation has focusing 

in the x direction and defocusing in the y direction, the equations of  motion are 
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The solutions satisfying the correct boundary conditions at 0s  are 
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Putting s L into these equations, and into these equations differentiated with 

respect to s yields the transfer matrix 
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Taking the limit 0L one obtains the thin lens approximations 
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where the focal length f is1/ KL . 


