1. The key to this problem is to realize that the gs in the expression for y have a time
derivative in them. So an argument of this type is valid

Tw/l—ﬂzdt =T\/dt2 —(1/¢?)(d +ay? +dz?).
t t

But the invariance of the space-time interval shows that under a general Lorentz
transformation

tjz\/dtz ~(1/¢?) (e +dy? +dz?) :T Jdt 2= (1/c?) (ax 7+ dy 2+ dz ?)
t ty
Therefore
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The square root differential expression is well defined because the four-velocity

of any massive particle is always time-like.

A more formal and precise argument is the following. Divide the closed interval
[t t,] into N equal sub-intervals of duration At=(t,—t,)/N labeled by the index

: 1, =[t,+(i—1)At,t, +iAt |. By the general Lorentz transformation between
frames we may establish the coordinates of the space-time events c(t,),X(t,) and
c(t,+iAt),X(t, +iAt) in the prime frame. Call the coordinates in the K’ frame
c(ty),%; and ct/, X’ respectively. Recall the mean value theorem from calculus
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forsome T, € Ii. In the limit N — oo, the intervals become infinitesimals and
AX, X =%,

)= = ont

This means

T«/l—ﬁzdt = lim i\/mz —(1/¢*)|ax[’
Y G

The Lorentz transformations are linear, and so the differentials cAt and AX
transform in the same way as ct and X. Therefore, by the invariance of the space-
time interval under Lorentz transformations,

.Hl ﬂdt_llmz\/At’z 1/c |A
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because the durations of all the intervals in the prime frame approach zero as N
increases without bound. It should be noted that At/ is NOT necessarily constant

as i changes when there is acceleration in the orbit.

By the relativistic Lorentz Force equation

g.40m) g g(E+VxB)=qv-E
dr
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= ym(L+ B7y° )V (dv/ dt) = y'my-(dv/dt).
So
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3. Using the relativistic momentum-energy relation

EZ — pZCZ +m2c4
2EdE = 2 pdpc?

dE _ ypmedpe’ _ fdp _ oo dp
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4. Starting with the relativistic Lorentz force

d_7:o_>M=0 V| =const = v,
dt dt
dv =£v dv, ﬁv
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ddt\gx +02v, =0 dt\gy +Qv, =0
V,(t)=Acos(Qt+6) v, (t)=—Asin(Qt+5)

V[=A—> A=v,

x(t)=x, +§sin(Qct+5) y(t)=y, +§cos(Qct+5)
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5. The formula means Bp measured in units of T m is equal to 3.3356 times the
momentum measured in GeV / ¢, for a singly charged particle. Note 1 Tis 1V
s/m?.So eBpfor 1 T mis 1 eV s/m, which are momentum units. 1 GeV/c is 10°
eV/2.99792458 x 10® m/s = 3.33564 eV s/m. So

Bp [T m]=3.33564 p [GeV/c]
For an ion with atomic weight A, the total momentum in units of GeV/c is
A[(GeV/u)/c] . For a fully stripped ion, the particle has a charge of Ze. So

Bo [T m]=(3.33564A/Z) p [(GeV/u)/c]
This means, for example, that the magnetic field needed to bend a fully stripped
heavy ion is more than twice that needed to bend a proton at the same momentum
per atomic mass unit.
6. This problem is a perfect example of the use of the magnetic rigidity. The electron
relativistic momentum is p = /y* —Im,c = \/»* —1(0.511 MeV/c), the magnetic
rigidity is y/»*—1(0.511 MV/c),and 1 T =1 (V sec)/(m?). Now

B :(B—lf))ZSin(elz)

for magnets in the normal configuration. The bend angles are /16 =0.19635 rad
for the first arc and 7/32=0.098175 rad for the rest of the arcs.

~|/(605/0.511) ~1x0.511x10°V

= - 2sin0.098175=0.3956 T =3.956 kG
2.998x10° m/sec(1 m)

~|/(1693/0.511)" ~1x0511x10°V

B, = 5 2sin 0.04909 = 0.5542 T =5.542 kG
2.998x10° m/sec(1 m)

~|/(2781/0511)" ~1x0.511x10°V

B, = 5 2sin0.04909 = 0.4552 T =4.552 kG
2.998x10° m/sec(2 m)

~ |/(3868/0.511)" ~1x0511x10°V

y = 5 2sin0.04909 =0.4220 T =4.220 kG
2.998x10° m/sec(3 m)

|/(4956/0.511)° ~1x0.511x10°V

B, = 5 2sin 0.04909 =0.5408 T =5.408 kG
2.998x10° m/sec(3 m)




Arc Electron | Number of Dipole Bend Magnetic

Energy Dipoles Length Angle Field
(MeV) (m) (rad) (M)

1 605 16 1 0.19635 0.3956

2 1693 32 1 0.098175 0.5542

3 2781 32 2 0.098175 0.4552

4 3868 32 3 0.098175 0.4220

5 4956 32 3 0.098175 0.5408

7. Technically, we did this calculation in the lectures. If Hill’s equation has focusing

in the x direction and defocusing in the y direction, the equations of motion are
2
d—;( +Kx=0
ds
d’y
——Ky=0
ase
The solutions satisfying the correct boundary conditions at s=0are

X(s) =%, cos(«/?s)+ x{)sin(«/fs)/«/f
y(s)=Y, cos(«/?s)+ ygsin(\/fs)/\/f

Putting s = Linto these equations, and into these equations differentiated with
respect to s yields the transfer matrix

L cos(\/RL) sin(\/RL)/\/R 0 0 (O)
X'(L) —\/Rsin(\/EL) cos(\/RL) 0 0 x'(0)
y(L) | 0 0 cosh(VKL) ~sinh(VKL)/VK || ¥(0)
y (L) 0 0 \/Rsinh(\/RL) cosh(\/EL) Y (O)

Taking the limit L — 0 one obtains the thin lens approximations
x(L) 1 0 0 0)x(0)
x(L)| [-1/f 1 0 0} x(0)
y(L)| | o 0 1 oy
y'(L) 0 0 1/f 1){y'(0)

where the focal length f is1/KL.



